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1. Introduction

Building on the mathematical work [1], there has recently been tremendous progress in the

use of exceptional collections to derive quiver gauge theories for Calabi-Yau cones [2 – 7].

In this program, initiated in [8], one begins with a Fano Kähler-Einstein surface V . An

exceptional collection on V is a collection of objects in the derived category of coherent

sheaves on V that forms an analogue of a basis of a vector space. Given such a collection

with nice enough properties, Bondal [1] constructs a quiver that has a derived category of

representations equivalent to the derived category of coherent sheaves. It is shown in the

above references how to ‘complete’ the quiver to obtain a new, more complicated quiver,

whose category of representations corresponds not to V , but rather to the total space ω

of the canonical bundle over V . In this paper we consider a related variety, C(V ), which

(on the level of points) is obtained from ω by collapsing the zero section. It is so named

because if the anticanonical bundle of V is very ample, then C(V ) is isomorphic to the

cone over V in its anticanonical projective embedding. It follows from topological string

theory [5] that the gauge theory on a D-brane located at the tip of the cone C(V ) is the

quiver gauge theory corresponding to the completed quiver. Other Calabi-Yau cones can be

obtained by undoing an orbifold as shown in [6]. Recently, Herzog and Karp [9] have shown

how to find exceptional collections describing a large class of toric cones, and Verlinde and

Wijnholt [10] have applied these techniques towards string phenomenology.

In string theory, we generally expect that if we have a D-brane probing a particular

geometry, the moduli space of the gauge theory on the brane (or perhaps a particular

branch thereof) should correspond in some way to the geometry being probed. A pioneering

investigation of this question was in the work of Douglas, Greene and Morrison [11]. It is

then an interesting question to ask about the moduli spaces of these quiver gauge theories

derived from exceptional collections. In mathematical language, this is the moduli space

of representations of the completed quiver. In this paper, we will address this question for

exceptional collections consisting solely of line bundles. (This implies that the ranks of the
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gauge groups are all one.) We will show that one component of the classical moduli space

of the gauge theory is precisely the cone C(V ) on which the D-brane lives.

It is interesting to note that there exists a natural map from points on V (respectively

ω) to the stack of isomorphism classes of representations of the original (respectively com-

pleted) quiver.1 A representation consists of a vector space for each node in the quiver

and a linear map for each arrow. In our case, the nodes of the quiver will correspond to

the line bundles E1, . . . , En in our exceptional collection, and the set of arrows from j to i

will correspond to vectors in the vector space Hom(Ei, Ej). Given a point p in our variety,

there is a canonical quiver representation with vector spaces given by the fibers at p of the

dual line bundles. Set theoretically, the moduli space of the gauge theory is in a quotient of

a subset of the moduli stack. The compatibility of the stack theoretic and moduli theoretic

approaches will be discussed in [12].

The main idea of our approach is as follows. It is well-known in gauge theory that the

moduli space of vacua is parameterized by the gauge-invariant operators which for quiver

gauge theories are all given by loops in the quiver. (In mathematical language, the moduli

space is equal to the reduced variety underlying the affine GIT quotient of the space of

representations by the complexified gauge group, which is defined as Spec of the ring of

gauge-invariant functions.) A result of Bridgeland [3] tells us that the ring of based loops

in our quiver, i.e., loops through a given node, is isomorphic to the ring of sections of the

anticanonical line bundle on V . It follows that the affine algebraic variety parameterized

by the ring of based loops is isomorphic to the cone C(V ). There is still some difficulty

arising from the mismatch between based loops and loops in general. This is why C(V )

turns out to be only one irreducible component (branch) of the moduli space.

In this discussion, we have set the Fayet-Iliopoulis terms to zero. (Mathematically,

this means that we do not impose any stability condition on the space of representations.)

Turning on these terms corresponds to (partially) desingularizing the tip of the cone2. The

relation of this to dibaryonic operators in the SU(d)n gauge theory is currently being pur-

sued by the first author. We restrict in this paper to the situation where the cone is defined

by the canonical line bundle. The extension to the undone orbifolds of [6] is straightforward.

It is also an interesting question, in the mathematical context, to ask whether the uncom-

pleted quiver has a stability condition such that its moduli space of stable representations

has V as one of its components. This will be addressed in a future work [12].

This paper is organized as follows. In section 2, we briefly review the material that we

need from the theory of exceptional collections in the derived category of an algebraic vari-

ety. In section 3, we describe quiver gauge theories and their moduli spaces and prove our

main result. Finally, in section 4, we illustrate our result for the Z2 orbifold of the conifold.

2. Exceptional collections and quivers

In this section, we give an overview of the procedure for obtaining a quiver from an excep-

1We thank David Ben-Zvi for calling our attention to this map.
2See [12, remark 3.4].
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tional collection. For more details, see [1 – 4, 6]. An exceptional sheaf3 is a coherent sheaf,

E, such that

Extk(E,E) = C
δk0 . (2.1)

A strong exceptional collection is an ordered collection of exceptional sheaves, (E1, . . . , En),

such that

i > j ⇒ Hom(Ei, Ej) = 0, (2.2)

and ∀ i, j, Extk(Ei, Ej) = 0 ∀k 6= 0. (2.3)

Finally, the exceptional collection is called full if it generates the derived category. With

this data, let

T =
n⊕

i=0

Ei , (2.4)

and

A = [Hom(T, T )]op =
⊕

i≤j

Hom(Ei, Ej), (2.5)

where the multiplication

Hom(Ei, Ej) × Hom(Ek, El) → Hom(Ek, Ej) (2.6)

is zero unless i = l and is otherwise defined in the obvious manner. Bondal [1] constructs

a quiver with relations whose nodes are indexed by the exceptional objects E1, . . . , En,

and whose path algebra is isomorphic to A. In other words, the vector space of paths

from node j to node i modulo relations is canonically isomorphic to Hom(Ei, Ej), and

the multiplication of Equation (2.6) corresponds to composition of paths. Furthermore,

Bondal proves that the derived category of representations of this quiver is equivalent to

the derived category of coherent sheaves on V .

Given such an exceptional collection, the doubly infinite collection of sheaves generated

by the relation

Ei = Ei+n ⊗ KV , i ∈ Z, (2.7)

is called a helix. Following Bridgeland [3], we call this helix simple if Extk(Ei, Ej) = 0 for

all i ≤ j ∈ Z whenever k 6= 0. We next define the helix algebra,

B̃ =
⊕

k≥0

∏

j−i=k

Hom(Ei, Ej), (2.8)

where i and j run over the integers. This algebra has a natural Z-action given by the

isomorphism

⊗KV : Hom(Ei, Ej) −→ (Ei−n, Ej−n). (2.9)

The invariant subalgebra under this action is called the rolled-up helix algebra by Bridge-

land; we will denote its opposite algebra by B. It is has been long conjectured and finally

3This definition is most naturally applied to exceptional objects in the derived category, but in our case

it is sufficient to work with honest sheaves.

– 3 –



J
H
E
P
0
3
(
2
0
0
6
)
0
7
3

shown in [7] that this algebra is the path algebra of a ‘completed quiver’ where the relations

can be derived from a superpotential.

Recall that ω is defined to be the total space of the canonical bundle KV on V , and

let π denote the projection from ω to V . The nodes of the completed quiver correspond

to the sheaves π∗(Ei) on ω, and the arrows are defined such that the vector space spanned

by the set of paths from node j to node i is isomorphic to

Hom(π∗(Ei), π
∗(Ej)) =

⊕

m≥0

Hom(Ei, Ej ⊗ K−m
V ). (2.10)

Note that these vector spaces are infinite dimensional, but each summand is finite dimen-

sional. The grading by m in Equation (2.10) corresponds to the grading in the path algebra

given by the number of times that a path circles the quiver. Since we will be assuming

that the sheaves E1, . . . , En are all line bundles, Equation (2.10) tells us that for all i, the

algebra Bi of loops based at i is isomorphic to

Hom(π∗(Ei), π
∗(Ei)) =

⊕

m≥0

H0(K−m
V ). (2.11)

Even though the collection π∗E1, . . . , π
∗En on ω is not exceptional, Bridgeland shows

that the derived category of representations of B and, hence, of the completed quiver, is

equivalent to the derived category of coherent sheaves on ω.

3. Moduli spaces of quiver gauge theories

Given a quiver with relations derived from a superpotential, the additional ingredient that

we need to define a quiver gauge theory is a dimension vector. This is a vector of n

integers, (d1, . . . , dn), where n is the number of nodes in the quiver. The matter content

then consists of a vector multiplet for each node associated with a U(di) gauge group

at that node and a chiral multiplet for each arrow that transforms in the fundamental

of the head and the antifundamental of the tail. We will restrict our attention to the

case in which the gauge groups are all U(1). Thus each arrow corresponds to a complex

number, and our configuration space is simply C
#arrows. We then impose the F-term and

D-term constraints with all the FI-terms set to zero, and quotient by the gauge groups.

The F-terms are the relations in the quiver as discussed in section 2, and they cut out a

subvariety of C
#arrows. The D-term constraints are known in the mathematical literature

as a moment map; imposing them and quotienting by the gauge group means taking a

symplectic quotient. It is well known to both physicists and mathematicians [13, 14] that

this corresponds to taking a GIT quotient by the complexified gauge group. With the

FI-terms turned off, this means that we consider the affine variety SpecR, where R is the

ring of gauge invariant functions on our subvariety. In fact, the relevant space for physics

is not SpecR, but rather its underlying reduced variety, i.e., the set of points cut out of

affine space by the equations defining the ring R.
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Let us now consider the total space ω of the canonical bundle on V . A polynomial

function on ω may be thought of as an element of the section ring

S :=
⊕

m≥0

H0(K−m
V ), (3.1)

where m corresponds to the degree of the polynomial in the fiber direction. There is a

natural projection from ω to SpecS, and it is an isomorphism away from the zero section,

which gets collapsed to a point because V is projective. Let C(V ) be the underlying reduced

variety of SpecS. If the anticanonical bundle if very ample then V is isomorphic to ProjS,

and C(V ) is simply the cone over V in its anticanonical embedding. It is a theorem of

LeBruyn and Procesi4 that the invariant ring of any quiver with any dimension vector

is generated by the traces of automorphisms coming from loops in the quiver.5 Suppose

that it is in fact generated by functions associated to loops that are based at a given node

i. Then Equation (2.11) tells us that R ∼= Bi
∼= S, and therefore that SpecR ∼= SpecS.

Passing to the underlying reduced varieties, we conclude that the moduli space of vacua in

the quiver gauge theory is isomorphic to C(V ).

Finally, we would like to eliminate the assumption that all invariants of the quiver are

generated by loops based at a single node. In general, instead of an isomorphism between R

and S, we have the following commutative diagram for each i, where ϕi is the isomorphism

of Equation (2.11). The map Ψ is determined by the property that the above diagram

Bi

σi
ÃÃ@

@@
@@

@@
S

ϕioo

R

Ψ

??ÄÄÄÄÄÄÄÄ

commutes for all i. The existence of such a map is guaranteed by the compatability of the

isomorphisms ϕi, and its uniqueness comes from the fact that the images of the various

σi generate R as a ring. The injection σi ◦ ϕi induces a surjective map from the quiver

moduli space SpecR to SpecS, while Ψ induces a section of this map. We will prove below

that there exists a nonzero elements βi ∈ Bi such that σi becomes an isomorphism after

inverting βi. It follows that the inclusion induced by Ψ of C(V ) into the quiver moduli

space is an isomorphism over the open set where βi is nonzero. Since C(V ) is irreducible,

this implies that the inclusion identifies C(V ) with an irreducible component of the moduli

space.

Given any pair of nodes i and j, Equation (2.10) tells us that the space of paths in

from j to i can be identified with the vector space
⊕

m≥0 Hom(Ei, Ej ⊗K−m
V ). Since K−1

V

is ample, this vector space is always nonzero. Choose a pair of nonzero paths p from i to

j and q from j to i, and let β
j
i be the composition qp. If ` is a loop based at j, then

σi(β
j
i ) · σj(`) = σi(qp) · σj(`) = σi(p`q). (3.2)

4See, for example, Lecture 10 of [15].
5It is interesting to note that if we replace the gauge groups by the special unitary groups SU(di) we

will have more invariants. In physics, these are called dibaryons, while in the mathematical literature, they

are called semi-invariants of the quiver.
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Put βi =
∏

j 6=i β
j
i . Equation (3.2) tells us that σi(βi) · σj(`) ∈ σi(Bi). Since the ring R

is generated by functions associated to loops, this implies that σi(βi) · R is contained in

σi(Bi). Thus, when we invert βi, the inclusion σi becomes an isomorphism.

The precise mathematical theorem that we have proven may be stated as follows.

Theorem 1. Let E1, . . . , En be a full, strong, exceptional collection of line bundles on a

Fano surface V , generating a simple helix. Then C(V ) includes into the moduli space of

S-equivalence classes6 of representations of the associated ‘completed quiver’ with dimen-

sion vector (1, . . . , 1), and the image is the canonical reduced subscheme of an irreducible

component.

4. An example

O(0, 1)
•

•

_g
bj

HH
HH

HH
HH

H

HH
HH

HH
HH

H

O • wÄ

ai

wwwwwwwww

wwwwwwwww O(1, 1)//4
eij

•

•
ci

wÄ vv
vv

vv
vv

v

vv
vv

vv
vv

v

O(1, 0)

dj

_g GGGGGGGGGG

GGGGGGGGGG

Figure 1: The completed quiver for P1 × P1.

To illustrate our theorem, we consider an example in which V ∼= P
1 × P

1, and C(V )

is the Z2 orbifold of the famous conifold. The line bundles O,O(0, 1),O(1, 0), and O(1, 1)

form a full strong exeptional collection; its quiver is shown in Figure 1, with i, j, k and l

running from 1 to 2. The 4 in the middle of the central arrow means that there are four

arrows from O to O(1, 1). Let {x1, x2} be a basis of sections of O(0, 1), and {y1, y2} a basis

of sections of O(1, 0). The arrows ai and ci correspond to multiplication by xi, and bj and

dj correspond to multiplication by yj . This gives the relations

aibj = djci for all i, j. (4.1)

In addition, the arrows eij correspond to multiplication by xiyj leading to further relations.

These relations can all be derived from the superpotential

W = (a1b1 − d1c1)e22 − (a1b2 − d2c1)e21 − (a2b1 − d1c2)e12 + (a2b2 − d2c2)e11. (4.2)

Let us consider only those loops that are based at the node O(0, 1). There are näıvely

2× 4× 2 = 16 loops through this node that cycle exactly once around the quiver. Modulo

relations, however, we find that the ring of based loops is generated by nine monomials and

may in fact be identified with the subring of C[x1, x2, y1, y2] spanned by all monomials with

the same even degree in both x and y. One can see by explicit calculation that this gives

6This means that we identify two isomorphism classes if their closures intersect in the moduli stack.
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the Z2 orbifold of the conifold, but it is also possible to see this more geometrically. This

ring is precisely the homogeneous coordinate ring of P
1 × P

1 in its projective embedding

defined by composing the 2-uple embedding of P
1×P

1 in P
2×P

2 with the Segré embedding

of P
2 × P

2 in P
8. The hyperplane bundle on P

8 pulls back to O(2, 2) = K−1
V over P

1 × P
1,

so we immediately see that our variety is the affine cone we are looking for. In this case,

the invariant ring is an integral domain, and, consequently, any loop that does not pass

through the node O(0, 1) is equivalent in the path algebra to a linear combination of loops

that do.
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